Structural search and advanced query search is temporarily unavailable. We are working to fix this issue. Thank you for your support and patience.


Record Information
Version2.0
Creation Date2012-07-30 14:54:45 -0600
Update Date2015-09-13 12:56:14 -0600
Secondary Accession Numbers
  • ECMDB21171
Identification
Name:3-Hydroxycinnamic acid
Description3-hydroxycinnamic acid, also known as m-coumaric acid, is an aromatic acid. Research has shown that E. coli K-12 can grow with 3-hydroxycinnamic acid as the sole carbon source. (EcoCyc, PMID 6345502)
Structure
Thumb
Synonyms:
  • (2E)-3-(3-hydroxyphenyl)prop-2-enoate
  • (2E)-3-(3-hydroxyphenyl)-2-propenoate
  • (2E)-3-(3-hydroxyphenyl)-2-propenoic acid
  • (2E)-3-(3-hydroxyphenyl)acrylate
  • (2E)-3-(3-hydroxyphenyl)acrylic acid
  • (2E)-3-(3-hydroxyphenyl)prop-2-enoate
  • (2E)-3-(3-hydroxyphenyl)prop-2-enoic acid
  • (E)-3-(3-hydroxyphenyl)-2-propenoate
  • (E)-3-(3-hydroxyphenyl)-2-propenoic acid
  • 3'-Hydroxycinnamate
  • 3'-Hydroxycinnamic acid
  • 3-(3-Hydroxyphenyl)-2-Propenoate
  • 3-(3-Hydroxyphenyl)-2-Propenoic acid
  • 3-(3-Hydroxyphenyl)acrylate
  • 3-(3-Hydroxyphenyl)acrylic acid
  • 3-(3-Hydroxyphenyl)acrylsaeure
  • 3-(3-Hydroxyphenyl)prop-2-enoate
  • 3-(3-Hydroxyphenyl)prop-2-enoic acid
  • 3-Coumarate
  • 3-Coumaric acid
  • 3-Hydroxycinnamate
  • 3-Hydroxycinnamic acid
  • M-Coumarate
  • M-Coumaric acid
  • M-Hydroxy-Cinnamate
  • M-Hydroxy-Cinnamic acid
  • M-Hydroxycinnamate
  • M-Hydroxycinnamic acid
  • Trans-3-Coumarate
  • Trans-3-Coumaric acid
  • Trans-3-Hydroxycinnamate
  • Trans-3-Hydroxycinnamic acid
Chemical Formula:C9H8O3
Weight:Average: 164.158
Monoisotopic: 164.047344122
InChI Key:KKSDGJDHHZEWEP-SNAWJCMRSA-N
InChI:InChI=1S/C9H8O3/c10-8-3-1-2-7(6-8)4-5-9(11)12/h1-6,10H,(H,11,12)/b5-4+
CAS number:588-30-7
IUPAC Name:(2E)-3-(3-hydroxyphenyl)prop-2-enoic acid
Traditional IUPAC Name:m-coumaric acid
SMILES:OC(=O)\C=C\C1=CC=CC(O)=C1
Chemical Taxonomy
Description belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated.
KingdomOrganic compounds
Super ClassPhenylpropanoids and polyketides
ClassCinnamic acids and derivatives
Sub ClassHydroxycinnamic acids and derivatives
Direct ParentHydroxycinnamic acids
Alternative Parents
Substituents
  • Cinnamic acid
  • Coumaric acid
  • Coumaric acid or derivatives
  • Hydroxycinnamic acid
  • Styrene
  • 1-hydroxy-4-unsubstituted benzenoid
  • 1-hydroxy-2-unsubstituted benzenoid
  • Phenol
  • Monocyclic benzene moiety
  • Benzenoid
  • Carboxylic acid derivative
  • Carboxylic acid
  • Monocarboxylic acid or derivatives
  • Organic oxide
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Physical Properties
State:Solid
Charge:-1
Melting point:192-194 °C
Experimental Properties:
PropertyValueSource
Predicted Properties
PropertyValueSource
Water Solubility1.04 g/LALOGPS
logP1.71ALOGPS
logP1.83ChemAxon
logS-2.2ALOGPS
pKa (Strongest Acidic)4.01ChemAxon
pKa (Strongest Basic)-6ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area57.53 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity45.04 m³·mol⁻¹ChemAxon
Polarizability16.37 ųChemAxon
Number of Rings1ChemAxon
Bioavailability1ChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleYesChemAxon
Biological Properties
Cellular Locations:Cytoplasm
Reactions:
SMPDB Pathways:
2-Oxopent-4-enoate metabolismPW001890 ThumbThumb?image type=greyscaleThumb?image type=simple
2-Oxopent-4-enoate metabolism 2PW002035 ThumbThumb?image type=greyscaleThumb?image type=simple
Phenylalanine metabolismPW000921 ThumbThumb?image type=greyscaleThumb?image type=simple
KEGG Pathways:
  • Microbial metabolism in diverse environments ec01120
  • Phenylalanine metabolism ec00360
EcoCyc Pathways:
  • cinnamate and 3-hydroxycinnamate degradation to 2-oxopent-4-enoate PWY-6690
Concentrations
Not Available
Spectra
Spectra:
Spectrum TypeDescriptionSplash Key
GC-MSGC-MS Spectrum - GC-MS (2 TMS)splash10-0udl-1691000000-331053d0d0b85549ac0bView in MoNA
GC-MSGC-MS Spectrum - GC-MS (Non-derivatized)splash10-0udl-1691000000-331053d0d0b85549ac0bView in MoNA
GC-MSGC-MS Spectrum - GC-EI-TOF (Non-derivatized)splash10-0udi-1891000000-049e1d80dd47b23e8c28View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-02t9-2900000000-91ffd4c10eaed6a17632View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (2 TMS) - 70eV, Positivesplash10-00y3-6390000000-f1a30e2fb9cd1fb11341View in MoNA
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, PositiveNot AvailableView in JSpectraViewer
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 10V, Negative (Annotated)splash10-03xr-0900000000-4259219e89806dfe2602View in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 25V, Negative (Annotated)splash10-014i-4900000000-2157a17ec65ead35585eView in MoNA
LC-MS/MSLC-MS/MS Spectrum - Quattro_QQQ 40V, Negative (Annotated)splash10-00kf-9300000000-3325dd31a734dd4659bbView in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negativesplash10-03di-0900000000-be33d196fbb525019f07View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) 30V, Negativesplash10-0002-0900000000-d256885fb0f35d3d6680View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , negativesplash10-03di-0900000000-be33d196fbb525019f07View in MoNA
LC-MS/MSLC-MS/MS Spectrum - LC-ESI-QTOF , negativesplash10-0002-0900000000-d256885fb0f35d3d6680View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Positivesplash10-0002-1900000000-87be0242c9f5b426f6b8View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 40V, Positivesplash10-014l-9000000000-9e4128fa078e73e71cbaView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 30V, Negativesplash10-0002-0900000000-d256885fb0f35d3d6680View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 30V, Positivesplash10-0006-9100000000-1865c168df491277a4d3View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 30V, Positivesplash10-0006-9000000000-296d14129321002679a3View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 20V, Positivesplash10-00kf-9700000000-6d29cdde66b32806de5fView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Positivesplash10-0002-0900000000-9da76da83e0462c48acfView in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Positivesplash10-0002-0900000000-bf33c5b8f5901c60b332View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 35V, Negativesplash10-014i-2900000000-11ae76e2fe36da1dfbe6View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 10V, Positivesplash10-0002-0900000000-b6bf0b46b2fa8324cf71View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 6V, Positivesplash10-00kb-0900000000-1065251e7cf92f343533View in MoNA
LC-MS/MSLC-MS/MS Spectrum - 50V, Positivesplash10-004i-9000000000-0a87c81608b3fbcee7c9View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-014j-0900000000-b5ad37fb931b464df7d5View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-014j-1900000000-c66c146ee9509bf8a413View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0fvi-9700000000-fcc332df0fcb818fe0e0View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-03di-0900000000-408ac0dd815354188750View in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-03di-0900000000-146bae2da386ca2d4f1aView in MoNA
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-014m-3900000000-235b38f342376d1c9f90View in MoNA
MSMass Spectrum (Electron Ionization)splash10-03xr-7900000000-61ee2ad0ad164a1f7550View in MoNA
1D NMR1H NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,1H] 2D NMR SpectrumNot AvailableView in JSpectraViewer
2D NMR[1H,13C] 2D NMR SpectrumNot AvailableView in JSpectraViewer
References
References:
  • Appiah-Opong R, Commandeur JN, van Vugt-Lussenburg B, Vermeulen NP: Inhibition of human recombinant cytochrome P450s by curcumin and curcumin decomposition products. Toxicology. 2007 Jun 3;235(1-2):83-91. Epub 2007 Mar 15. Pubmed: 17433521
  • Azzini E, Bugianesi R, Romano F, Di Venere D, Miccadei S, Durazzo A, Foddai MS, Catasta G, Linsalata V, Maiani G: Absorption and metabolism of bioactive molecules after oral consumption of cooked edible heads of Cynara scolymus L. (cultivar Violetto di Provenza) in human subjects: a pilot study. Br J Nutr. 2007 May;97(5):963-9. Pubmed: 17408528
  • Baba S, Osakabe N, Natsume M, Yasuda A, Muto Y, Hiyoshi K, Takano H, Yoshikawa T, Terao J: Absorption, metabolism, degradation and urinary excretion of rosmarinic acid after intake of Perilla frutescens extract in humans. Eur J Nutr. 2005 Feb;44(1):1-9. Epub 2004 Feb 18. Pubmed: 15309457
  • Burlingame, R., Chapman, P. J. (1983). "Catabolism of phenylpropionic acid and its 3-hydroxy derivative by Escherichia coli." J Bacteriol 155:113-121. Pubmed: 6345502
  • Colen CB, Seraji-Bozorgzad N, Marples B, Galloway MP, Sloan AE, Mathupala SP: Metabolic remodeling of malignant gliomas for enhanced sensitization during radiotherapy: an in vitro study. Neurosurgery. 2006 Dec;59(6):1313-23; discussion 1323-4. Pubmed: 17277695
  • Efdi M, Itoh T, Akao Y, Nozawa Y, Koketsu M, Ishihara H: The isolation of secondary metabolites and in vitro potent anti-cancer activity of clerodermic acid from Enicosanthum membranifolium. Bioorg Med Chem. 2007 Jun 1;15(11):3667-71. Epub 2007 Mar 18. Pubmed: 17400462
  • Funk C, Braune A, Grabber JH, Steinhart H, Bunzel M: Moderate ferulate and diferulate levels do not impede maize cell wall degradation by human intestinal microbiota. J Agric Food Chem. 2007 Mar 21;55(6):2418-23. Epub 2007 Feb 24. Pubmed: 17319685
  • Gomez-Ruiz JA, Leake DS, Ames JM: In vitro antioxidant activity of coffee compounds and their metabolites. J Agric Food Chem. 2007 Aug 22;55(17):6962-9. Epub 2007 Jul 27. Pubmed: 17655324
  • Gonthier MP, Verny MA, Besson C, Remesy C, Scalbert A: Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr. 2003 Jun;133(6):1853-9. Pubmed: 12771329
  • Grande MJ, Lopez RL, Abriouel H, Valdivia E, Ben Omar N, Maqueda M, Martinez-Canamero M, Galvez A: Treatment of vegetable sauces with enterocin AS-48 alone or in combination with phenolic compounds to inhibit proliferation of Staphylococcus aureus. J Food Prot. 2007 Feb;70(2):405-11. Pubmed: 17340876
  • Henry BL, Monien BH, Bock PE, Desai UR: A novel allosteric pathway of thrombin inhibition: Exosite II mediated potent inhibition of thrombin by chemo-enzymatic, sulfated dehydropolymers of 4-hydroxycinnamic acids. J Biol Chem. 2007 Nov 2;282(44):31891-9. Epub 2007 Sep 5. Pubmed: 17804413
  • Ibanez AJ, Muck A, Svatos A: Dissipation of charge on MALDI-TOF polymeric chips using an electron-acceptor: analysis of proteins. J Mass Spectrom. 2007 May;42(5):634-40. Pubmed: 17370249
  • Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S., Krummenacker, M., Altman, T., Kaipa, P., Spaulding, A., Pacheco, J., Latendresse, M., Fulcher, C., Sarker, M., Shearer, A. G., Mackie, A., Paulsen, I., Gunsalus, R. P., Karp, P. D. (2011). "EcoCyc: a comprehensive database of Escherichia coli biology." Nucleic Acids Res 39:D583-D590. Pubmed: 21097882
  • Keyhanian S, Stahl-Biskup E: Phenolic constituents in dried flowers of aloe vera (Aloe barbadensis) and their in vitro antioxidative capacity. Planta Med. 2007 Jun;73(6):599-602. Epub 2007 May 22. Pubmed: 17520524
  • Kim MJ, Choi SJ, Kim HK, Kim CJ, Hong B, Kim YJ, Shin DH: Activation effects of Allium tuberosum Rottl. on choline acetyltransferase. Biosci Biotechnol Biochem. 2007 Jan;71(1):226-30. Epub 2007 Jan 7. Pubmed: 17213651
  • Konishi, Y., Kobayashi, S. (2004). "Microbial metabolites of ingested caffeic acid are absorbed by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers." J Agric Food Chem 52:6418-6424. Pubmed: 15479001
  • Kosanam H, Prakash PK, Yates CR, Miller DD, Ramagiri S: Rapid screening of doping agents in human urine by vacuum MALDI-linear ion trap mass spectrometry. Anal Chem. 2007 Aug 1;79(15):6020-6. Epub 2007 Jun 30. Pubmed: 17602668
  • Liu HL, Wan X, Huang XF, Kong LY: Biotransformation of sinapic acid catalyzed by Momordica charantia peroxidase. J Agric Food Chem. 2007 Feb 7;55(3):1003-8. Pubmed: 17263505
  • Luceri C, Giannini L, Lodovici M, Antonucci E, Abbate R, Masini E, Dolara P: p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br J Nutr. 2007 Mar;97(3):458-63. Pubmed: 17313706
  • Mennen LI, Sapinho D, Ito H, Bertrais S, Galan P, Hercberg S, Scalbert A: Urinary flavonoids and phenolic acids as biomarkers of intake for polyphenol-rich foods. Br J Nutr. 2006 Jul;96(1):191-8. Pubmed: 16870009
  • Monteiro M, Farah A, Perrone D, Trugo LC, Donangelo C: Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans. J Nutr. 2007 Oct;137(10):2196-201. Pubmed: 17884997
  • Nakazawa T, Ohsawa K: Metabolites of orally administered Perilla frutescens extract in rats and humans. Biol Pharm Bull. 2000 Jan;23(1):122-7. Pubmed: 10706426
  • Qin J, Chen D, Hu H, Qiao M, Zhao X, Chen B: Body distributioin of RGD-mediated liposome in brain-targeting drug delivery. Yakugaku Zasshi. 2007 Sep;127(9):1497-501. Pubmed: 17827930
  • Rakotondramanana DL, Delomenede M, Baltas M, Duran H, Bedos-Belval F, Rasoanaivo P, Negre-Salvayre A, Gornitzka H: Synthesis of ferulic ester dimers, functionalisation and biological evaluation as potential antiatherogenic and antiplasmodial agents. Bioorg Med Chem. 2007 Sep 15;15(18):6018-26. Epub 2007 Jun 29. Pubmed: 17624792
  • Shahidi F, Alasalvar C, Liyana-Pathirana CM: Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J Agric Food Chem. 2007 Feb 21;55(4):1212-20. Epub 2007 Jan 24. Pubmed: 17249682
  • Wang Q, Morris ME: The role of monocarboxylate transporter 2 and 4 in the transport of gamma-hydroxybutyric acid in mammalian cells. Drug Metab Dispos. 2007 Aug;35(8):1393-9. Epub 2007 May 14. Pubmed: 17502341
  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., Goodacre, R. (2008). "Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites." Anal Chem 80:2939-2948. Pubmed: 18331064
  • Wu CI, Tsai CC, Lu CC, Wu PC, Wu DC, Lin SY, Shiea J: Diagnosis of occult blood in human feces using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. Clin Chim Acta. 2007 Sep;384(1-2):86-92. Epub 2007 Jun 26. Pubmed: 17662705
Synthesis Reference:Not Available
Material Safety Data Sheet (MSDS)Download (PDF)
External Links:
ResourceLink
CHEBI ID47925
HMDB IDHMDB01713
Pubchem Compound ID637541
Kegg IDC12621
ChemSpider ID553147
Wikipedia IDM-coumaric_acid
BioCyc IDCPD-10797
EcoCyc IDCPD-10797

Enzymes

General function:
Involved in 3-(3-hydroxyphenyl)propionate hydroxylase activity
Specific function:
Catalyzes the insertion of one atom of molecular oxygen into position 2 of the phenyl ring of 3-(3- hydroxyphenyl)propionate (3-HPP) and hydroxycinnamic acid (3HCI)
Gene Name:
mhpA
Uniprot ID:
P77397
Molecular weight:
62185
Reactions
3-(3-hydroxyphenyl)propanoate + NADH + O(2) = 3-(2,3-dihydroxyphenyl)propanoate + H(2)O + NAD(+).
(2E)-3-(3-hydroxyphenyl)prop-2-enoate + NADH + O(2) = (2E)-3-(2,3-dihydroxyphenyl)prop-2-enoate + H(2)O + NAD(+).

Transporters

General function:
Involved in transmembrane transport
Specific function:
Could be a transporter for 3-phenylpropionate (hydrocinnamic acid)
Gene Name:
mhpT
Uniprot ID:
P77589
Molecular weight:
41550
General function:
Involved in transporter activity
Specific function:
Non-specific porin
Gene Name:
ompN
Uniprot ID:
P77747
Molecular weight:
41220
General function:
Involved in transporter activity
Specific function:
Uptake of inorganic phosphate, phosphorylated compounds, and some other negatively charged solutes
Gene Name:
phoE
Uniprot ID:
P02932
Molecular weight:
38922
General function:
Involved in transporter activity
Specific function:
OmpF is a porin that forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane. It is also a receptor for the bacteriophage T2
Gene Name:
ompF
Uniprot ID:
P02931
Molecular weight:
39333
General function:
Involved in transporter activity
Specific function:
Forms passive diffusion pores which allow small molecular weight hydrophilic materials across the outer membrane
Gene Name:
ompC
Uniprot ID:
P06996
Molecular weight:
40368